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The absence of detailed balance in systems containing pseudo-first-order reactions can 
cause the evaluation of steady-state concentrations to be a difficult computational problem. 
If the rate constants differ by many orders of magnitude, direct solution for these con- 
centrations from the matrix of rate constants is not practical. The embedded Markov 
chain generated by the state-changes of one molecule has a transition matrix whose better 
separation of eigenvalues makes it more suitable for analysis than the matrix of rate con- 
stants. Solution for an eigenvector of this matrix by the method of inverse iteration provides 
an efficient means for obtaining steady-state concentrations. 

We [I] have been interested in economically computing the steady state of large 
numbers of models of the early physicochemical processes of photosynthesis. The 
models use “first-order kinetics,” meaning that they are described by a linear first- 
order system of differential equations with constant coefficients. The model systems 
can have 40 or more components, and involve reaction times ranging from lo-l4 s 
(for exciton migration) to over lo3 s (for reverse electron transfers). 

When different components of a physical system decay with greatly differing time 
constants, the differential equations describing the system are said to be “stiff,” 
and great ingenuity may be required to obtain an economical and accurate solution 
[2-51. If one wishes only to evaluate the condition of the system at infinite time, the 
steady state, then the problem is far simpler, but potentially still difficult. 

When all of the processes in a linear kinetic system correspond to passive physical 
or chemical changes, then the principle of detailed balance permits a trivial evaluation 
of the steady state [6]. However, if one is interested in an open system where not all 
processes obey detailed balance, then this method of solution is not available. 

The conventional numerical techniques fail when faced with a 40 x 40 coefficient 
matrix having nonzero elements ranging over 20 orders of magnitude, and they are 
very expensive when used for somewhat more modest systems. These problems have 
spurred us to develop a new method which is particularly suitable for the extremely 
stiff systems we have encountered. 

This paper discusses existing techniques for evaluating the steady state of linear 
systems, and introduces the computational use of an embedded discrete Markov 
process where a very large dynamic range of rate constants creates a numerical 
situation which cannot be solved by more conventional techniques. 
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CONVENTIONAL METHODS 

The behavior of a three-state linear kinetic system [7] is described by the following 
set of equations. 

dc,- 
dt - -&,I + k,,) cl + k,c, + k,,c, , 

d’c,- 
dt - k,,c, - (k,, + k,,) cz + kmc3 , 

& _ -- 
dt k,,cl + kmcz - (k,, + kd ~3 . 

For a general system, this set of equations may be written as 

dc dt = Kc 

(1) 

where 
k, = -C kij . 

i#i 
(3) 

In chemical kinetics, cj is the amount or concentration of species j, and kij is the 
rate constant for the reaction of species j to form species i. Physiologists interested 
in interconnected pools of biochemicals might refer to ci as the amount of a radio- 
active tracer in compartment j, and kii as the rate constant for transfer between com- 
partments. A physicist might refer to ci as the number of atoms in quantum state j, 
and kii as the rate constant for transfer between quantum states. An electrical engineer 
might refer to ci as the electrical charge on capacitative element j, and kij as a con- 
ductance. We will refer to the q as the concentration of molecules in state j. 

Equation (3) is a consequence of assuming that the system conserves the material 
whose amount in different states is described by the cj . A nonconservative N-state 
system can be handled by adding a (N + I)st state, with k(N+l)i being the rate constant 
at which material in state j is lost from the physical system. 

In the steady state, the system of Eqs. (2) reduces to 

Kc = 0, (4) 

with auxilliary normalization requirement that 

identifying the ci as relative concentrations or amounts. 
If the rate constants satisfy detailed balance, then the steady-state ci are determined 

simply by the equations 
Ci/Cj = kif/kji . (6) 
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For the remainder of this paper, we assume that this simple solution is not available 
because a number of the rate processes considered are pseudo-first-order, and do not 
obey detailed balance. 

Graph theory, known in chemical kinetics as the King-Altman method, can be 
used to get an analytic solution for small systems [S, 93. Unfortunately, the complexity 
of this approach increases rapidly with the size of the system. A sample system of 
eight states has a total of 2300 algebraic terms [lo]. 

The set of Eqs. (4) and (5) may not be solved numerically by simply calling on a 
stock computer program which solves sets of linear equations, because the matrix K 
is singular. It is useful to rewrite Eq. (4) as 

Kc = Oc, (7) 

which makes it clear that what is desired is the eigenvector of K corresponding to 
an eigenvalue of zero. 

If money is no object, and the rate constants in the system are not too widely 
divergent, then there are several ways to solve for the steady-state concentrations. 
However, increased sophistication on the part of the user is repaid with both a sub- 
stantially more efficient calculation, and the ability to handle problems which are 
intractable when attacked with simpler methods. 

The easiest method, for the user, is to feed the matrix K to a package of computer 
programs written to handle general eigensystem problems [ll]. The user need only 
feed in the matrix, and take as his solution the eigenvector corresponding to an 
eigenvalue of zero. However, the matrix is nonsymmetric: Computer programs written 
to handle general eigenproblems arising from such matrices perform an arduous 
transformation on the matrix in order to evaluate all of the eigenvalues [12, 131. 

This transformation is expensive, far more so than that required to solve the 
Hermitian matrices familiar to most physical scientists. In addition, it may be less 
accurate than more appropriate methods because of the accumulation of roundoff 
errors during the lengthy computations. In our case, however, the transformation is 
unnecessary, because much is known about the properties of a rate matrix such as K. 

Gerschgorin’s theorem [ 12, 141 states that every eigenvalue of an n by n matrix A 
lies in at least one of the n circular disks in the complex plane which have centers 
at aii and radii of Cjzi aij . For the transpose of the matrix K, these disks are centered 
at -xi kij and have radii of xi kij . All of the disks are contained within the largest, 
which has its center at 

and a radius of the same magnitude. See Fig. la. 
If any state can eventually be reached from any other state, then there is but one 

eigenvalue of zero, which is a mathematical confirmation that the steady state is unique 
[7]. Gershgorin’s theorem shows that all of the other eigenvalues have negative real 
parts [6, 151. If the principle of detailed balance were obeyed for all closed paths of 
state changes, then all of the eigenvalues would be strictly real [6, 16, 171. 



STIFF LINEAR KINETIC SYSTEMS 73 
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FIG. 1. (a) Gerschgorin disks for the transpose of the rate matrix K. All eigenvaiues lie within 

the union of the disks, and hence within the largest disk. The desired eigenvalue is at the origin; 
(b) Gerschgorin disks for the transpose of K + ~1, where s = 1.1 times the radius of the largest disk. 
The desired eigenvalue is now s, and is guaranteed to be larger in absolute value than any other. 

Our eigenvalue of interest, zero, is an extremal eigenvalue, at one edge of the disk 
described in Eq. (8). The most common technique for evaluating an extremal eigen- 
value is the power method, also called the matrix iteration method. This technique 
relies on the fact that 

where b is an arbitrary vector, X,,, is the eigenvalue of A which is largest in absolute 
values, and v, is the corresponding eigenvector. 

To’ apply the power method to determine the eigenvector of K with eigenvalue 
zero, we must consider the modified matrix M = K + ~1, where I is the identity 
matrix. The eigenvectors of M are the same as those of K, but the corresponding 
eigenvalues are shifted by s. If s is set equal to 1.1 times the maximum sum defined 
in Eq. (g), then the eigenvector of interest, whose components reflect the relative concen- 
trations of different states, now corresponds to the largest eigenvalue, s. See Fig. lb. 
Application of the power method to this modified matrix will, in theory, yield this 
eigenvector. 
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The power method is the one discussed by Wei and Prater [18] for use in chemical 
kinetics, discussed in Wilson, Decius, and Cross [19] for use in the analysis of mole- 
cular vibrations, and by Robinson [20] for use in evaluating exciton migration. 
Unfortunately, the rate of convergence of the power method depends on the ratio 
of the largest eigenvalue to the next largest. As Wei and Prater noted, this ratio is 
very close to one in characteristically stiff kinetic systems, so that convergence can 
be extremely slow. 

In our case, however, reliance on the power method is unnecessary, because the 
eigenvalue of interest, namely zero, is known with complete accuracy. When one 
knows the eigenvalue of interest, and other eigenvalues are nearby, the numerical 
method of choice is one known as inverse iteration, which corresponds in essence to 
applying the power method to the inverse of the original matrix [12, 131. The algorithm 
is based on solution of the linear equation system 

(A - ~1) x = b, (10) 

where A is the matrix of interest, and b is an arbitrary vector, such as (1, I,..., 1). 
The solution vector x will approximate the eigenvector whose eigenvalue is closest 
to S. If b is replaced by x and the process repeated, then x will converge to this eigen- 
vector. When s lies much closer to the desired eigenvalue than to any other eigenvalue, 
the rate of convergence is quite high. The bulk of the computer program for this 
technique may be composed of commonly available routines for the solution of 
a system of linear equations by Gaussian elimination [21]. 

For most situations, inverse iteration to find the zero eigenvector of the rate 
matrix K is a highly accurate and efficient method for evaluating the ci . However, 
when the rate constants for the system vary over an extremely wide range, so that the 
system of equations is very stiff, the matrix K may become badly ill-conditioned. The 
requirements of the inverse iteration method are modest, but it is necessary that the 
precision of the computer use (for example, 10’ when computations are carried to 
seven decimal digits) be greater than the ratio 

h, - 4 
A, - A, 

where h, is the eigenvalue whose eigenvector is desired, h, is the eigenvalue nearest 
to X, , and X, is the eigenvalue furthest from h, . 

Because of our interest in problems in which this ratio for the K matrix is prohi- 
bitively large, we have been motivated to examine the properties of the discrete 
Markov process which is mathematically embedded in any linear kinetic system. 

THE EMBEDDED PROCESS 

In chemical kinetics the ci of Eqs. (1) through (7) are ordinarily considered to be 
concentrations. With the normalization requirement stated in Eq. (5), the ci are relative 
concentrations. 
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However, it is possible to give a probabilistic interpretation of these ci . Instead 
of focusing on the bulk concentration of molecules in the different states, one can 
instead concentrate on the fate of an individual molecule as it undergoes conversion 
into the various states described by Eq. (2). This is known in probability theory as a 
continuous parameter (time) Markov process [22, 231. The stochastic equations 
governing the fate of a particular molecule during the course of time are Eqs. (2), 
where ci is now the probability that a particular molecule is in state i, and kij is the 
probability per unit time that a molecule in state j will undergo a transition to state i. 
This stochastic process of course underlies the macroscopic changes in concentration 
which Eq. (2) is more often used to discuss. 

These equations describe the fate of both individual molecules and bulk concen- 
trations because the latter is just a scaled up version of the former. As a consequence 
of this, any method that we can use to evaluate the stochastic problem more efficiently 
will be equally applicable to the more general linear kinetics problem. 

Until now, we have been treating the problem as a continuous time Markov 
process. We have been considering the probability that a molecule, being in a partic- 
ular state, undergoes a change of state in a particular infinitesimal increment of time. 
The point of view is that of describing a molecule, or an ensemble of molecules, con- 
tinuously with time. 

Let us instead suppose that we describe a molecule only with respect to its changes 
from one state to another. If the molecule is known to be in state 1, we do not ask 
when it changes to state 2, or to state 3; but only “to which state does it change ?” 
One can then make a list of the states through which a molecule passes, such as 
12313213. This series of state changes is a discrete parameter Markov process. This 
discrete process of state changes is said to be embedded in the continuous time process. 
Especially in the queuing literature the embedded process is often examined in 
preference to the continuous process, frequently because the discrete process is 
Markovian even when the continuous process is not [22,23]. 

When examining our system from this point of view, we no longer ask about the 
relative probability of being in a particular state at any instant in time, because 
time is no longer the independent variable. The independent variable is now the integer 
label describing how many times the molecule has changed states. What we are inte- 
rested in is the probability that a state change will produce a particular state. We 
may write a matrix of conditional probabilities P, whose elements pij describe the 
probability that a molecule currently in state i will next be in state j. The matrix P 
is known in the probability literature as the one-step transition matrix. Its elements 
may be constructed quite easily from the rate constants of the system 

Pij = ki,iC k,i for i # j, 
l#i (12) 

pii = 0. 

The eigenvalues of such a matrix all lie on or within the unit circle on the complex 
plane, with,for an irreducible chain, as ours is, exactly one eigenvector with eigenvalue 
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0ne.l The eigenvector of the transpose of P with eigenvalue 1 is known as the stationary 
probability vector. Its components describe the relative probability that a change of 
state of the molecule will produce a particular state. When each component of this 
vector is multiplied by the lifetime of the corresponding state, the resultant is identical 
to the steady-state probability vector of the continuous time formalism. Accordingly, 
the steady-state concentrations of the state of the molecule may be evaluated by a 
simple transformation of an eigenvector of the matrix P, as well as by an eigenvector 
of the matrix K. 

This vector of P may be determined by either the power method or inverse iteration. 
As will be demonstrated shortly with examples, application of the power method 
to P is usually much more effective than application to K because of a better separation 
in eigenvalues. However, since the eigenvalue of interest is known precisely, inverse 
iteration is also the method of choice in solving for the desired eigenvector of P. 

It should also be noted that the concept of the embedded chain is very useful in 
designing effective Monte Carlo calculations for the study of time-dependent behavior. 

SAMPLE APPLICATIONS 

EXAMPLE 1. We begin with the general three-state system, which can readily be 
solved by hand, and thus display the dependence of the eigenvalues of the matices 
K and P on the rate constants of the system. The eigenvalues of the rate matrix K 
are 0, and &[---B f (Ba - 4C)1/2], where 

B = k,, + k,, + k,, + kzs + k,, + k,, , 

and 

C = k,&,, + k&z + k&2 + k&n + k&a + k&s + W,, + k&z + k&z . 

When 4C > B2, two eigenvalues will be complex. This will occur, for example [17], 
when k,, = k,, = k,, = 0, k,, = ks2 = 1, and k,, = 2, in which case the eigenvalues 
are 0 and -2 & i. 

In most cases, however, quite the opposite will be true, with B2 > C. This will 
occur whenever one or both of the rate constants connecting one pair of states (call 
them a and b) are much greater than the rate constants connecting a and b to the third 
state. With C/B2 < 1, the eigenvalues become 0, -C/B, and --B + C/B. 

If one were to apply the power method to this K matrix, not knowing the analytic 
solution, the first step would be to shift the desired eigenvalue into prominence by 
adding 1.1 times the maximum sum (8) along the diagonal of K. For this system, the 

1 The chain being irreducible means that any state can eventually be reached from any other state. 
Application of Gerschgorin’s theorem to P proves that all of the eigenvalues have a modulus less 
than or equal to one. From the definition of a stochastic matrix it follows that P has an eigenvalue 
1 with eigenvector (I, l,..., I), while Frobenius’s theorem states that, for any irreducible nonnegative 
matrix, all eigenvalues of maximal modulus are distinct. See [24]. 
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maximum sum lies between B/3 and B. For B2 > C, the ratio of the desired eigen- 
value to the next largest is thus approximately 1 + C/B2 after shifting. Convergence 
of the power method is dependent on this ratio being significantly greater than 1, 
so the use of this method is clearly inappropriate whenever the rate constants con- 
necting one pair of states is many times the rate constants connecting another pair. 

With B2 > C, the ratio (11) for determining the usefulness of inverse iteration on 
the K matrix becomes B2/C. When this ratio is less than 1 % of computer precision, 
inverse iteration will be very effective. This requirement is far less stringent than that 
necessary for effective use of the power method, but it can easily be violated when the 
range of rate constants is sufficiently large. 

The transition matrix P of the embedded chain of state changes has eigenvalues 
of 1 and -4 f $(l - 4D/A)l12, where 

A = &,I + kd(kl2 + ~22Nb2 + k22), 

and 

D = k&k,, + k&2&,, . 

To illustrate the advantages of using the P matrix, let us consider the worst possible 
situation: The separation between the desired eigenvalue, 1, and the other eigenvalues 
is at a minimum when D = 0, in which case the eigenvalues are 1, -1, and 0. 

After adding 0.5 along the diagonal of P to shift the desired eigenvalue into promi- 
nence, the ratio of this eigenvalue to the next largest is 3. This is sufficient to assure 
fairly rapid convergence with the power method, independent of the actual values of 
the rate constants. 

In this worst possible situation, the ratio (ll), which determines the usefulness of 
inverse iteration, is 2. This is of course far less than the precision of any computer, 
and guarantees extremely rapid convergence. 

EXAMPLE 2. As a second example, we consider a highly simplified version of the 
problem [l], quantum conversion in photosynthesis, which stimulated this work. 
This example is too complex to be conveniently handled by analytic techniques, 
but it remains small enough, and has a sufficiently modest range of rate constants, 
that numerical solution for all eigenvalues of the K and P matrices is possible. This 
permits comparison of the merits of different numerical methods for determining the 
steady-state concentration. 

Consider a system composed of two molecules, P and A. P is a specialized chlorophyll 
which, when electronically excited, can transfer an electron to an acceptor A. A then 
transfers the electron to a secondary acceptor, not considered to be a part of the 
system, and P is reoxidized by a secondary donor, also not a part of the system. 

P has three stable conditions : PO, ground state; P*, electronically excited; and P+, 
oxidized. A has two conditions: A”, oxidized; and A-, reduced. The system has a total 
of six states, corresponding to each possible condition of each molecule. 
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The allowed reactions are as follows: 

(a) electronic excitation 

P“A” -+ P*A” 
POA- -+ P*A- 

(b) initial electron transfer 

P*A” + P+A- 

(c) P restoration 

P+A- ---f PA- 
P+A” + PA0 

(d) A restoration 

POA- + P”Ao 
P+A- + P+A” 
P*A- -+ P*AO. 

Reasonable rate constants (in s-l) for each of the reactions in these four categories 
are +a, 1; ---a, 10s; +b, loll; -b, 106; +c, 106; -c, 103; +d, 104; -d, lOa. 

With these rate constants, the eigenvalues of the rate matrix K are 0, -1.01 x ltY, 
-1.00 x lo*, -1.01 x 106, -1.00 x 108, and -1.00 x loll. The eigenvalues of 
the transition matrix P are 1, -l.OOOOO, *0.43, and &0.007. 

Relative to its distance from the furthest eigenvalue, the eigenvalue 0 of the matrix 
K is degenerate with the nearest eigenvalue to 1 part in IO’. Use of the power method 
on K is thus completely out of the question. With 10 or more decimal digits of machine 
accuracy, one could use inverse iteration on K, but any further spreading of the eigen- 
values would cause trouble very quickly. 

On the other hand, the eigenvalue 1 of the matrix P is well separated from the others. 
One could use the power method: After shifting by 0.5, the ratio of the desired eigen- 
value to the next largest would be 1.7. However, in our computing experience with 
comparable but somewhat larger systems, the eigenvalue 1 is often degenerate with 
its nearest neighbor to within 1 part in 100. Even though convergence can be obtained 
with the power method, it is with computing charges 10 to 100 times those for the 
more efficient inverse iteration method. 

CONCLUSIONS 

After reviewing methods available for determining the steady state of a linear 
kinetic system, we have considered the stochastic processes that underlie any such 
system. Because of the homology between linear kinetic processes and Markov 
processes, any numerical method suitable for a Markov process is also applicable 
to linear kinetic systems. 
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Two matrices can be constructed from the rate constants for state-to-state 
transitions. One is the rate matrix of the kinetic system and of the underlying con- 
tinuous time Markov process. The other is the one-step transition matrix of the 
embedded discrete-parameter Markov chain of state changes. Of the two, the transition 
matrix almost always has a much better relative separation of the desired eigenvalue, 
making determination of the corresponding eigenvector easier. 

Each of the two matrices can be subjected to two different techniques to get the 
eigenvector desired: the power method, and inverse iteration. Inverse iteration. is by 
far the more powerful, but it is somewhat more difficult to program than the power 
method. 

Of all the techniques available, inverse iteration on the transition matrix is by far 
the best for the stiff equations characteristic of many kinetic systems. Inverse iteration 
on the rate matrix is quite satisfactory whenever the range of rate constants is much 
less than the precision of the computer used, but seems to present no advantages over 
use of the transition matrix. 

Use of the power method on the transition matrix is not as efficient as use of inverse 
iteration, but the computation is usually quite fast for small systems. Simplicity 
of programming makes it attractive for the casual user. 

The power method on the rate matrix almost always gives quite slow convergence, 
and should be avoided. 
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